2(20)/(5.27^2)=g

Simple and best practice solution for 2(20)/(5.27^2)=g equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(20)/(5.27^2)=g equation:



2(20)/(5.27^2)=g
We move all terms to the left:
2(20)/(5.27^2)-(g)=0
We add all the numbers together, and all the variables
-1g+220/(5.27^2)=0
We multiply all the terms by the denominator
-1g*(5.27^2)+220=0
We multiply parentheses
-5g^2+220=0
a = -5; b = 0; c = +220;
Δ = b2-4ac
Δ = 02-4·(-5)·220
Δ = 4400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4400}=\sqrt{400*11}=\sqrt{400}*\sqrt{11}=20\sqrt{11}$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{11}}{2*-5}=\frac{0-20\sqrt{11}}{-10} =-\frac{20\sqrt{11}}{-10} =-\frac{2\sqrt{11}}{-1} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{11}}{2*-5}=\frac{0+20\sqrt{11}}{-10} =\frac{20\sqrt{11}}{-10} =\frac{2\sqrt{11}}{-1} $

See similar equations:

| -2(v+4)=5v-7+2(4v+2) | | 4((d+5)(d+5))=100 | | 2x2-22=50 | | -11=x-(-2) | | 14040x/50=12500x/20 | | x2+7x-28=0 | | -6y-16=2(y-4) | | –83u–24=7u+3909u= | | 14040/50x=12500/20x | | -12=4(u-7)-6u | | 9x^2-108x-172=0 | | (n+1)(n+1)=1440 | | 2x-29+1x+12+1x+5=180 | | n^2+3n+2=1440 | | 81=27^x+2 | | 19x-10+60=180 | | 39.99+.45x=44.99+.44x | | 15a+3=18 | | 6s-4=8(2+14s) | | 1.2=0.5x-1+0.3(-x-2) | | 23x+2+100=180 | | 8÷4y= | | 12.5x+30=-7.5+90.5 | | 3^4x-5=1/27^2x+10-5 | | 5c+2+96=180 | | 3−7x=−11 | | n+0=⅓ | | 2x+-4=-12 | | -40x+8-20x+3-15x+9=180 | | 3x2+75=150 | | -40x+8+-20x+3+-15x+9=180 | | 16/19=x/450 |

Equations solver categories